
jsCalc
an inline calculator for 4th Dimension

John Skinner

Version 1-6

15.01.2003

Find the current version at
www.skinnerconsulting.com/downloads/4D/jsCalc/jsCalc.html

http://www.skinnerconsulting.com/downloads/4D/jsCalc/jsCalc.html

jsCalc is an inline calculator: it reads a mathematical expression directly from the currently
active field or variable in your existing input form, calculates the result, and pastes this back
into the field. An example will show how this looks to the user:

Before …

… and after.

The user types the expression directly into the field, selects it, runs jsCalc and sees the
answer - right there where she needs it. No searching the desktop for a hand calculator, no
remembering and mis-typing numbers: no trouble.

jsCalc is an end-user feature, to make your database easier to use and your customers
happier. It’s a (minor) selling point: your competitors’ products cannot do this.

jsCalc can be started in two ways. When started normally, it uses the 4D Last Object Com-
mand to determine which field or variable in the frontmost window has the keyboard focus.
If the field contains highlighted text, then only that substring is considered, otherwise the
entire field content is considered. The original content is copied to the clip-board, in case it
was valuable to the user. (The calculation cannot be undone with Command-Z, since no user
action occurs.)

If the field is numeric, or if it is
empty, then an input dialog is
displayed where the user may
type the expression. (Numeric
fields cannot contain operator
characters! You may type them at
will, but 4D removes them as
soon as the field loses the focus.
Were the example here a numeric
field, jsCalc would receive the
string "7.31283".) The name of
the referenced field or variable appears in the title bar.

You can also use the Developer Hook to specify a variable as source and destination for the
calculation This lets you provide the functionality of jsCalc in places where Last Object
does not work, e.g. within 4D Write areas. This is discussed on page 5 below.

The result of the expression is written back unformatted into the referenced field or variable,
replacing highlighted content (or the whole string). jsCalc returns an integer to report error
status (see page 6).

2

What is jsCalc?

How does jsCalc work?

jsCalc supports all the 4th Dimension numerical operators, as listed in the Programming
Language manual:

+ addition
- subtraction
* multiplication
/ floating-point division
\ long-integer division
% modulo
^ exponentiation

(Most end-uers do not know "modulo", you may wish to include a note in your user docu-
mentation explaining this.) Internal calculations are performed using REALs (15-digit
floating point). The result is rounded to 6 decimal places for display, but otherwise unfor-
matted. (Actually, the rounding depends on the field length: the result 189,675 would be
rounded to 0 decimal places = 190 for display in an Alpha(4) field.)

jsCalc supports multi-level nested parentheses ((1+((2*3)*4)*5)*6).

Whitespace, CR/LF characters and leading equals "=" characters will be ignored. Equals
characters within the expression are seen as delimiters: the string will be evaluated from left
to right, stopping at the equals sign.

jsCalc does not follow Order of Operations: 2+3*7=35. Users must set parentheses to clarify
the processing sequence: 2+(3*7)=23. This is mathematically incorrect, but it is consistent
with 4th Dimension’s user-mode math processing (e.g. the formular editor), which is why I
wrote it so.

jsCalc supports only decimal numbers: Hex, Octal and Log are not supported. Since jsCalc is
an end-user feature not a programmer tool, this is unlikely to be a significant limitation.

jsCalc can not evaluate Plug-In areas or web forms directly (since they are not "owned" by
4D). However, the Developer Hook feature allows you access to its functionality even in
these cases. This is discussed on page 5 below.

jsCalc is affected by a minor bug in the 4D toolbox: fields in sub-forms (related tables) are
handled incorrectly. Should the keyboard focus be on a field in a sub-form, Last Object
returns a pointer to a random object in the main form table. This is undetectable, since the
pointer and its target are both valid (but incorrect) objects.

This will remain a problem until 4D fixes Last Object.

3

What can jsCalc do?

What can jsCalc not do?

Known problems

jsCalc is a 4D Component, you may install it into any structure file using 4D Insider 6.7 or
newer. The component was created with 4th Dimension 6.7.2 Always make a copy of your
structure file before installing any component!

All Insider’s Moving… settings should be either Do not copy (top half of the dialog) or
Ignore (bottom half).

Warning: the component includes a table [jsCalc] which is never used. It’s only there to
contain the input dialog shown on page 2. Do not let Insider create this table!

During installation, Insider will ask
how the table should be handled.
You should choose Link to place
the input dialog in an existing table
(preferably one used for system
tasks rather than user data). This
allows you to uninstall the compo-
onent cleanly should you not wish
to use it.

Close the Insider window, and open your structure file with 4D.

You may edit the public method jsCalc_errorMsg to adapt it to your language or to the
"look and feel" of your database. The input dialog is also public, you may change its appear-
ance and edit the button labels etc. Do not rename the variables, nor delete the boundary rec-
tangle!

The jsCalc component can easily be removed from your structure files – provided that you
read these notes before installing it. If not, the component can still be uninstalled but 4D
Insider will have created a table which you are now stuck with.

Because the input dialog is in one of your own tables, Insider will not delete it when unin-
stalling the component. You must delete the dialog and its Style Sheets by hand.

4

Installing jsCalc

Localising jsCalc

Uninstalling jsCalc

All that you need do to enable jsCalc, is to create a menu item or a button in your existing
input form which calls jsCalc_start (and to give this a Tool Tip describing what it does).
That’s it, you’ve already finished! The component does everything else by itself, including
calling the input dialog if necessary.

Please set the button's "Focusable" and "Tabable" attributes off (disabled). This is necessary
for Windows users, otherwise Last Object finds the button instead of a text field.

The button method is very simple:
Case of

:(Form Event = on clicked)

C_INTEGER ($err)

$err:=jsCalc_start (True) ` with error messages

End case

The Boolean parameter controls the display of error messages: if TRUE then displayed, else
the method is silent. You may check the returned error status and do your own reporting if
desired (set the parameter to False).

The public method jsCalc_example can be used "as delivered" as the button method, please
ensure that only the "On Clicked" form event is enabled. You may alternatively wish to call
jsCalc from a menu item, in this case you will need to "wrap" jsCalc_start to capture the
return value.

With just a little more effort, you can offer your users the functionality of jsCalc even in
Plug-In areas e.g. within 4D Write. The Developer Hook makes this possible.

The method jsCalc_start takes an optional second parameter: a pointer to a field or variable.
You can copy the expression to this variable, send it to jsCalc, then copy the result to where
it belongs. Here’s an example of applying jsCalc in an on-screen 4D Write area:

v_myVar:=WR Get Selected Text (w_Area)

$err:=jsCalc_start (True; ->v_myVar)

If ($err = 0) ` successful?

WR Insert Text (w_Area; v_myVar)

End if

This would work equally well (the necessary changes being made) with other Plug-Ins like
AreaList Pro or 4D View.

5

Enabling jsCalc in your application

Enabling jsCalc "outside" your application

jsCalc returns an integer error codePossible values are:

0 Normal successful completion
-1 User cancelled the input dialog (not really an error)
-29001 Overflow: either longint value in integer field, or SANE error in a real field, or

the result string is too long for the field (e.g. "752168" in alpha 4)
-29002 Invalid expression: the string contained alphabetical characters
-29003 Unbalanced expression: too many (
-29004 Unbalanced expression: too many)
-29005 Badly formed expression: wrong number of operators
-29006 Divide by zero
-29007 No field has the keyboard focus. This typically occurs when the focus was

previously on a button and the user clicks into an empty variable. Type a
character or two and erase them, then call jsCalc again. This error also occurs if the
button that launches jsCalc is itself focusable and/or tabable. Please disable these
attributes for this button.

-29008 Wrong data type: field is neither String nor Numeric
-29009 Expression string is empty
-29010 String is not an expression (no operators)
-29011 Modulo by zero or a negative number

The phrase "normal successful completion" is an echo from my time as an Embedded-SQL
programmer at Intergraph. I always wondered how "abnormal successful completion" or
"normal unsuccessful completion" would look.

6

Error status from jsCalc

The jsCalc component is free, use it with my blessings. The source code is available for 15
Euros (US$15). It’s even tax-deductible: include your formal company name and address (or
mail me at john@skinnerconsulting.com) and I will send you a sales receipt.

Please send a cheque or money order (not cash) to
John Skinner
Bebelstraße 36
70193 Stuttgart
Germany

In Deutschland basierte Entwickler dürfen auch per Überweisung bezahlen, ich schicke
Ihnen meine Bankverbindungsinfos per E-Mail Antwort zu.

My heartfelt thanks go to:

Jef Raskin, creator of the classic Apple Mac interface. A page of wishful thinking in his
book "The Humane Interface" (Addison Wesley, 2000) inspired me to write jsCalc after
years of moaning about needing both a computer and a calculator on my physical desktop.
The book is not just for Mac developers: it discusses the Person/Machine Interface on a high
theoretical level, with examples that range from computer software to car radios.

Many members of the german-language 4D Support List, in particular Dietmar Harms,
Klaus Renoldi, Mark Sebastian and Thomas Maul of 4D Germany, for helpful advice (some
of it inadvertent).

Dietmar Harms, Angelika Maser, Ortwin Zillgen and Michael Zink for beta-testing
(some of it inadvertent).

The Developer Hook was Ortwin Zillgen’s idea. I had been wondering for weeks, how to
enable jsCalc in plug-ins like 4D Write; his suggestion was simple but very effective.

Any remaining errors are of course all my own work.

jsCalc is copyright © 2002-2003 by John Skinner. All rights reserved.

The software is distributed "as is", use it at your own risk. No guarantee or warranty whatso-
ever is offered, stated or implied. Although jsCalc has been extensively tested, I cannot
guarantee that it will work in your application, or on your customers’ computers.

7

The Price

Credits

The legal stuff

http://www.amazon.com/exec/obidos/ASIN/0201379376/skinnerconsul-20

mailto:john@skinnerconsulting.com

	Cover
	What is jsCalc?
	How does jsCalc work?
	What can jsCalc do?
	What can jsCalc not do?
	Known problems
	Installing jsCalc
	Localising jsCalc
	Uninstalling jsCalc
	Enabling jsCalc in your application
	Enabling jsCalc "outside"your application
	Error status from jsCalc
	The Price
	Credits
	The legal stuff

